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Estimating growth and mortality in stage-structured populations
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Abstract This paper presents a practical numerical method for separating and estimating growth and
mortality coefficients in stage- or size-structured populations using only observations of the relative
or absolute abundance of each stage. The method involves writing a system of linear ordinary differ-
ential equations (ODEs) modelling the rate of change of abundance. The solution of the differential
system can be numerically approximated using standard (e.g. sixth-order Runge-Kutta-Felhberg)
methods. An optimization problem whose solutions yield 'optimal' coefficients for a given model is
formulated. The ODE numerical integration technique can then be employed to furnish required
function and gradient information to the optimization algorithm. The data-fitting software package
ODRPACK is then successfully employed to estimate optimal coefficients for the ODE population
model. Simulation experiments with four- and eight-stage model populations illustrate that the
method results in the successful estimation of coefficients of mortality and growth from abundance
data.

Introduction

Growth and mortality are the principal processes that determine population
dynamics. Estimation of these life-history parameters at different life stages and
time intervals is crucial for understanding and interpreting the changes in popu-
lation abundance and structure.

However, minimal assumption simple methods for estimating growth rates,
mortality rates and stage duration in stage-structured populations require
development [see the important contributions by Wood (1994) and by Wood and
Nisbet (1991)]. Because methods for estimating such rates are not generally avail-
able, many depictions of 'ecosystems' that require such rates use contrived esti-
mates. Furthermore, in the literature, estimates of growth are often confounded
with mortality and vice versa; it is necessary to understand the statistical inter-
action of growth and mortality so that the two vital rates can be separated for use
in ecosystem models [the importance of this interaction is discussed in detail by
Beyer (1989)].

This paper describes a method for estimating the vital rates and stage duration
from estimates of the change in abundance or indices of abundance of each stage
as a function of time (as might be obtained from acoustic or optical monitoring
methodologies). Subsequent sections illustrate how the abundance trajectories
are developed as functions of time from a state diagram, discuss an analytical
approach to the problem, demonstrate how mortality-rate and growth-rate para-
meters can be estimated using an optimization formulation of the problem and

© Oxford University Press 1913

D
ow

nloaded from
 https://academ

ic.oup.com
/plankt/article/19/12/1913/1445824 by guest on 23 April 2024



BJ.RotnschiM el al.

modem parameter estimation software ODRPACK, and describe results of the
numerical method applied to the simulated data from four- and eight-stage
models. The paper concludes with a discussion.

Problem formulation

The stage-structured approach divides the population into recognizable stages,
e.g. nauplii, juvenile or adult stages. It is also possible to think of dividing the
population into length classes [as might be appropriate for the study of larval fish;
see Beyer (1989)]. The problem is: given estimates of abundance at each stage or
length class as a function of time, simultaneously estimate stage- or length-specific
mortality and growth rates.

The state diagram in Figure 1 shows the configuration of the problem. The
number of organisms in each stage at any instant of time is represented by x,{t)
where i represents the ith stage for i = 1, . . . , n stages. The vector of x,s at any
time t represents the state of the population at time t. The constants /cM_ 1 repre-
sent the growth rates from the (i - l)th to the ith stage, while the constants k^
represent the mortality rate of the ith stage.

The dynamics of such a system are represented by the system of linear ordin-
ary differential equations (ODEs):

au an
Qi\ "22

...ain\

\

which can be written more compactly as:

\

(1)

x = Ax(t) (2)

The structure of Figure 1 dictates that in the matrix A, the diagonal elements are
aa = -(^a + K + ij)- The off-diagonal elements are zero, except for the lower sub-
diagonal, where a, + ̂  = ki + ij. Consider as an example equation (3) representing
the dynamics of four life history stages (n = 4):

On

Fig. L Stage diagram showing the configuration of the mortality-growth estimate problem.
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Note that if we can determine an and a2h for example, then we can determine
both the growth and the mortality rates, k2\ and k^, since k2\ - a2\ and ^ = -{an

+ a2l), etc.
Note also that -au is the total instantaneous loss for the ith stage. The appar-

ent mortality rate is given by -au. However, if growth is not taken into account,
mortality will be overestimated. The magnitude of the overestimates is simply the
growth rate -aiyl _ t and vice versa.

Matrix stage-based population models were used to solve the 'forward
problem'—to forecast population dynamics by multiplying the vector of popu-
lation abundance by the population projection matrix at each time step (Caswell,
1978,1980; Crouse et ai, 1987; Nakaoka, 1993).

To solve the 'inverse problem', the coefficients of the projection matrix are esti-
mated based on the measurements of the change in abundance or the indices of
abundance for each stage.

The problem formulation thus requires a sequence of estimates of abundances
for each stage or length class. As a practical model, utilization of this technique
may require acoustic or optical estimates. However, because the techniques
admit statistical error, problems of misidentification, etc., can be evaluated stat-
istically.

We observe that equation (2) is a linear approximation which seems adequate
for relatively short observation intervals and please note that our procedure can
be extended to account for non-linear extensions of equation (2).

Analytical solution

The system of linear differential equations (1) can be solved analytically, provid-
ing an algebraic expression for abundance N(t) as a function of time /. A straight-
forward way of solving a system of differential equations (2) is to take its Laplace
transform:

x(s) = (sI-AY*x(0) (4)

where the initial conditions are given by x(0) = (Ku K2, ..., Kn)' and the co-
efficients in A are unknown parameters. By applying the inverse Laplace trans-
form operator to the solution in algebraic space, we obtain:

X(f) = L-i[(5/-A)-1]x(0) (5)

the time trajectory of the abundance of each life history stage. Standard non-
linear regression can be used to give straightforward estimates of the parameters.
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To give the simplest example, consider the two-stage (n = 2) population. First,
we write the appropriate differential equation:

(6)

where an, a2l and 022 a r e represented, respectively, by -a, b and -c for notational
convenience. We note that a = k^ + k2h b = k2X and c = k^. Setting c - k^ implies
that there is exactly zero growth in the last stage.

Assuming initial conditions x(0) = (A ,̂ K2)', we solve equation (6) by taking its
Laplace transform and then inverting the transform as specified above, which
yields:

= Kiber*-. (7)

a- c

The first row in the above column vector gives the trajectory or number of indi-
viduals as a function of time in the first stage, while the second row in the column
vector gives the number of individuals as a function of time in the second stage.

To show the form of equation (7) by an example, let a = 1.2, b = 0.5, c = 0.2,
Kx = 1000 and K2 = 500. These trajectories are plotted (see Figure 2). Because
a = 1.2 and b - 0.5, it is clear that Jtoi = 0.7 while k2l = 0.5. This illustrates the

1000

x2(t) - 1000 exp(-0.21) - 500 exp(-1.2 t)

Fig. 2. Abundance of xt and x2 in the two-stage model. They are trajectories according to equations
(11) and (12). Note that as x, is depleted, x2 increases. Then x2 becomes depleted.
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Estimating growth and mortality

separation of growth and mortality constants. Inserting these constants in
equation (7) results in:

(8)

and

x2(t) = lOOOe"0-2' - 500e"1-2' (9)

The stage duration can be obtained by simple integration of equations (8) and (9):

x,(t)dt (10)

Examination of the stage duration or average time in each stage is interesting
because it can be used to calculate the length of the time that the population is
exposed to a stage-specific risk. This is particularly important in the theory of
larval fish mortality [see the discussion in Rothschild (1986, p. 114)].

To estimate parameters of equation (7), data sets using equations (8) and (9)
were simulated and normally distributed noise was added to the data (see Figures
3 and 4).
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Fig. 3. Simulated abundance dynamics of stage 1 with random noise (two-stage model).
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Fig. 4. Simulated abundance dynamics of stage 2 with random noise (two-stage model).

The problem in this 'inverse' approach is now formalized by rewriting
equations (8) and (9) in the form:

= 1000e-

and

x2(0 - - 500e-

(11)

(12)

Our intent is to estimate the values of a and fj. This can be achieved using the
standard non-linear regression techniques (Seber and Wild, 1989). Using only the
data pictured (in Figures 3 and 4), approximate values of the parameters were
recovered with virtually no error.

However, it is interesting to note that with an increase in the number of stages,
the equations that need to be solved become more complicated. Perhaps more
importantly, with an increase in the number of stages, one runs into the difficulty
of generating equations with parameters to be estimated by non-linear regression
analysis. Thus, while simple for two-stage population, this approach has signifi-
cant drawbacks when extended to population models with more than two stages.
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Yet, the simple example above highlights the fact that conventional estimates of
mortality rate without estimates of growth rate, and estimates of growth rate
without estimates of mortality rate, can have substantial systematic biases.

Numerical approach to the problem

Many difficulties with scalability and error estimation in the analytical technique
described above for the solution of an ordinary least squares (OLS) problem can
be overcome by formulating the problem as an orthogonal distance regression
(ODR) problem. The (ODR) problem has been studied [see the papers by Boggs
and Rogers (1990) and Boggs et al. (1987)] and a robust implementation in public
domain software has also been released (Boggs et al., 1989, 1992). The method
and implementation have been successfully employed to solve many important
application problems. Similarly, below is described the application of ODRPACK
to the problem of estimating growth and mortality coefficients in stage-structured
populations.

Let xD(/,)s denote observed (data) measurements of the numbers of organisms
in given stages at times f, (i = 1, . . .,p). Further, let x(f,) approximate the solution
to the differential equation (2) comprised of coefficients aj,j=l,...,2n-\ (n is
the number of stages in the model). In this case, coefficients in the matrix A are
enumerated in the following way:

A =

la,
a2

0

0
"3
a4

0
0
a5

0
0
0

0 0
V " '" 2""2 ^"V

We wish to minimize the residual sum of the differences between computed
and observed data points subject to the computed values satisfying equation (2).
The resulting new problem can be formulated:

min /(a) =
a « = i

(13)

subject to the constraints

Ax = x, x(0) = (so)

aii-x £ 0 , / = 1 , . . . , H -

2i-i<0, i = l , . . . , n

(14)

(15)

(16)

The implicit equality constraints (14) require that the coefficients satisfy the
appropriate system of differential equations (2), while the inequality constraints
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(15) and (16) guarantee that coefficients correspond to the structure of the
problem illustrated in equation (3).

Also, since in practice the observation-error variance is proportional to the
square of the abundance for mostly process errors and very large samples, we
employ the appropriate weighting for the residual sum for the difference between
computed and observed data:

x(ti) - xD(t.)

In short, the problem of approximating the coefficients of our model differen-
tial equation has been recast as a constrained optimization problem. The func-
tion to be minimized, equation (13), usually called the objective function, is a
standard 'output least squares' function. We can write the equality constraints,
(14), as one vector function /i(a) = 0:

h(*) = (Ax-i,x(P)-xoy (18)

of our parameters a. Likewise, the inequality constraints can be written as a single
vector function, say g(a) <, 0:

g(a) = (a2l- + fl2l-_1,a2l_,)' (19)

Although our constraints are linear, one can easily envision significantly more
complicated and certainly highly non-linear ODEs replacing the linear system
presently employed. For this reason, we chose to solve this optimization problem
numerically (referred to in optimization as a non-linear programming problem)
defined by equations (13), (14), (15) and (16) using the standard data-fitting soft-
ware package ODRPACK (Boggs et aL, 1992). Optimization problem (13), (14)
can be reformulated without difficulty as an explicit (ODR) problem (see Boggs
et aL, 1992, p. 4) with implicit constraints (14) rewritten as a model function f.

x(t)=f(t,a)=AM0 (20)

ODRPACK has been designed for finding the parameters that minimize the
sum of the squared weighted orthogonal distances from a set of observations to
the curves or surfaces determined by the parameters.

Presently, a drawback of the approach is that one cannot impose constraints.
While the problem is not naturally constrained, one can imagine constraints rep-
resenting maximum or minimum bounds on variations in population in a given
cycle or similar constraints. For this reason, the authors are also investigating a
constrained optimization approach to the problem employing ideas from sequen-
tial quadratic programming (SQP) (see the paper by Boggs et aL, 1994). Similar
ideas have been successfully employed in other areas of science and engineering
(see Kearsley, 1996).
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Numerical results

To test the numerical approach, several simulated data sets were generated for
both four-stage and eight-stage populations. This was done in the following way:

(i) Coefficients of growth and mortality were randomly picked from the set of
reasonable values for growth and mortality rates. We generated 100
coefficient sets for this experiment.

(ii) Numerical solutions of the ODEs with the above coefficients generated a set
of observations of abundance of each stage (numerical tests here were per-
formed with p = 25 such simulated observations).

(iii) For each coefficient set, 100 levels of normally distributed noise (with stan-
dard deviation from 0.16 to 0.24 for four-stage and from 0.09 to 0.12 for
eight-stage population models) were added to the simulated data corre-
sponding to random fluctuations within a given percentage of deviation from
the 'actual' value (CV of 16-24%), thus generating sets of observations like
one would expect to collect in the field. These observations are shown as
asterisks, pluses, crosses and circles in Figures 5, 7 and 8.

The resulting data sets were assumed to be the 'observed' data. First we esti-
mated growth and mortality coefficients from the data without the 'noise' using
the optimization-based numerical approach described in the previous sections.

Four-stage population model

Fig. 5. Simulated abundance dynamics of the four-stage population model. Asterisks, pluses, crosses
and circles represent the 'observed' data, and solid lines represent the solution.
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Fig. 6. Typical estimated abundance trajectories (dotted lines) as compared to the original trajectories
(solid lines) of the four-stage population model.

These coefficients were then estimated from the 'observed' data sets using the
same numerical approach.

Figures 6, 9 and 10 show the results of the typical estimations from the
'observed' data sets for four- and eight-stage populations. The original trajec-
tories are shown as solid lines and the trajectories produced from the estimated
coefficients are shown as dotted lines. Also, Tables I and II show the original and
estimated coefficients (with 95% confidence intervals) for these estimations.

As seen from Figures 11 and 12, the accuracy of the estimated coefficients does
not appear overly dependent on the level of noise. On the contrary, the CV of
coefficients does not appear overly dependent on the level of noise the CV of
coefficients remains close to constant as a function of the CV of noise. However,
after using our technique to solve identification problems consisting of >100
different coefficient sets, we observed that the selection of a coefficient set greatly
influenced the solution and the procedure for finding the solution. In other words,
slight perturbations of the coefficient set for which the problem is well condi-
tioned could cause the problem to become ill conditioned.

Discussion

It was shown in numerical experiments that the proposed method allows esti-
mation of rates of mortality and transition to the next stage (growth, maturation,
etc.) with sufficient precision. In particular, the scheme appears to work
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Eight-stage population model; stages 1:4

x10* Eight-stage population model; stages 5:8

Figs 7 and 8. Simulated abundance dynamics of the eight-stage population model. Asterisks, pluses,
crosses and circles represent the 'observed' data, and solid lines represent the solution.
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x10' Eight-stage population model; stages 1:4

2 3 4 5 6 7 8

X10' Eight-stage population model; stages 5:8

Figs 9 and 10. Typical estimated abundance trajectories (dotted lines) as compared to the original
trajectories (solid lines) of the eight-stage population model.
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Actual coefficients

-1.1
0.8

-0.7
0.6

-0.6
0.5

-0.4

Estimated a

-1.10884936
0.83513807

-0.72974590
0.48441035

-0.52764224
0.51978080

-0.38332264

Estimating growth and mortality

Table L Actual and computed coefficients with 95% confidence intervals for the four-stage
population model

dents 95% confidence intervals

-133069617 to -0.88700255
0.12226160 to 134801451

-0.98901686 to -0.47047494
0.09880331 to 0.87001738

-0.77575753 to -0.27952695
0.20587469 to 0.83368691

-0.60042499 to -0.16622030

Table IL Actual and computed coefficients with 95% confidence intervals for the eight-stage
population model

ients 95% confidence intervals

-1.19968538 to -0.83929269
-0.12456032 to 1.43878460
-1.29305566 to -0.47156484

0.33502469 to 1.27721408
-0.95137870 to -0.42076916
-0.09053107 to 1.13255442
-1.12095822 to -0.12993314
-0.02825008 to 1.03769176
-0.95532174 to -0.06539341
-0.85221896 to 2.14972721
-2.77042540 to 1.00570655
-0.85460328 to 1.47588530
-1.87956801 to 1.03776433
-0.46673167 to 1.81707989
-1.58690365 to 0.46487911

successfully when data are provided in a large number of stages. It appears that
casting the model coefficients as solutions to a 'constrained optimization
problem' is a viable strategy for finding their approximate values based on obser-
vations.

The assumption of constant rates of mortality and growth within each stage is
a non-trivial but 'standard' assumption. If the actual process rates are not con-
stant within the stages under consideration, the resulting coefficients would be
incorrectly estimated. There are two solutions to this difficulty. The processes
could be analysed at shorter time intervals (which means more frequent sam-
pling), such that the rates of mortality and growth could be considered to be con-
stant. Another way to overcome this difficulty is to replace our elementary linear
model i = Ax with a more complicated non-linear model i = 4>(x). This is one of
the very strong advantages of the numerical approach presented here—in no way
does it depend specifically on the particular model employed. Therefore, if we
have notions regarding how the process changes in time, we can incorporate these
in the selection of appropriate objective and/or constraint functions to be handled
by the minimization algorithm.

1925

Actual coefficients

-1.0
0.7

-0.9
0.8

-0.7
0.5

-0.6
0.5

-0.5
0.5

-0.7
0.6

-0.8
0 3

-0.4

Estimated o

-1.01948904
0.65711214

-0.88231027
0.80611938

-0.68607393
0.52101167

-0.62544568
0.50472084

-0.51035757
0.64875412

-0.88235942
0.31064101

-0.42090184
0.67517411

-0.56101227
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Four-stage population model

0.17 0.18 0.19 0.2 0.21 022 023
0.11

Fig. 1L Uncertainty in estimated coefficients as a function of uncertainty in the population data for
the four-stage population model.

Eight-stage population model

0.095 0.1 0.105
CVot noise

0.11 0.115

Fig. 12. Uncertainty in estimated coefficients as a function of uncertainty in the population data for
the eight-stage population model.
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An analysis of larger collections of real field data in terms of the method
applicability, development and testing of non-linear models must be conducted.
Alternative formulations of our development and testing of non-linear models
are the potential perspectives for the future method development. In addition to
employing more sophisticated biological models, an examination of potential
statistical models that more delicately describe how noise and inaccuracies affect
observational data would be of interest.

Finally, we mention that the formulation and numerical solution of parameter
identification problems arising in marine sciences is becoming a very active field
(for example, see DeAngelis and Coutant, 1979; DeAngelis and Mattice, 1979;
Banks et al, 1991; Somerton, 1992). We intend to continue our contribution by
studying alternative optimization formulations in search of those that allow more
complicated models and demonstrate superior numerical results. The theoretical
and numerical characteristics of some alternative formulations are presently
being investigated.
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